NAVAL POSTGRADUATE SCHOOL Monterey, California

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
T. REPORT NUMEER - 2. GOVT ACCESSION NO.	3. Recipient's catalog number
4. TITLE (Ond Subtitio) Computer Simulated Development of a Command to Line-of-Sight Missile Using ON-OFF Control	5. TYPE OF REPORT \& PERIOD COVERED Master's Thesis December 1983
7. AUTMOR(E) Je Young, Yeun	8. CONTRACT OR GRANT NUMBER(a)
9. Performing organization name and adoress Naval Postgraduate School Monterey, CA 93943	10. PROGRAM ELEMENT, PRODECT, TASK REA \& WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME ANO ADDRESS Naval Postgraduate School Monterey, CA 93943	12. REPORT OATE December 1983
	13. NUMGER OF PAGES 82
Naval Postgraduate School Monterey, CA 93943	15. SECURITY CLASS. (ot inta roport) Unclassified
	15. OECLASSIFICATIONIOOWNGRADING

16. DISTRIBUTION STATEMENT (OI ATH ROPORt)

Approved for public release; distribution unlimitted
17. DISTRIBUTION STATEMENT (Of the ebotpect entored In Block 20, If difforent from Report)
10. SUPPLEMENTARY NOTES
19. KEY WORDS (Contimue an reveree elde If neceeeeny and Identify by block number)

Line-of-Sight Guidance
ON-OFF Control
Two-Level Relay
Saturating Linear Control
20. ABSTRACT (Conllinu an reverce elde Il neceecery and Identity by block number)

An on-off control provides a minimum time response for missile control. For application in missile control systems, it is wasteful of control effort (due to chatter) to use a ideal relay. Hence it is necessary to modify the ideal relay into a saturating linear control. The result was almost the same to that of using the ideal relay.

Approved for public release; distribution unlimited.

Computer Simulated Development of a Command to Line-of-sight Missila Osing ON-OPF Control

b Y

Submitted in partial fulfillant of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGNEERING
from the

NAVAL POSTGRADUATE SCHOOL December 1983

ABSTRACT

An on-off control provides a minimum time response for missile control. For application ̇n missile control systams, it is wasteful of control effort (ヨue to chatter) to use a ideal relay. Hence it is necessary to modify the iaeal relay into a saturating linear control. The result was almost the same to that of using the ideai reiay.

TABLE OF CONTENTS

I. INTRODUCTION 9
II. OVERVIEW OF LINE-OF-SIGHT GUIDANCE CONTROL 11
III. TYPICAL ENGAGEMENT SEQUENCE 15
IV. $O N-O F F$ (BANG-BANG) CONTROL 19
V. BASIC COMMAND TO LINE-OF-SIGHT SIMULATION 25
A. SCENARIO 25
B. EROGRAMMED GUIDANCE PHASE 27
C. ON-OFF. THRUST VECTOR, MISSILE CONTROL 28
D. SIMOLATION RESULTS 28
VI. PSEODO-LOS COMMAND SIMULATION 38
VII. SIMULATIONS NITH THO-LEVEL RELAY AND SATURATION CONTROL 44
A. TWO-LEVEL FELAY 44
B. SATURATING IINEAR CONTROL 46
VIII. CONCIUSION 59
APPENDIX A: VARIABLES LIST 61
APPENDIX B: PROGRAM OF THE SWICHING FUNCTION 62
APPENDIX C: PROGRAM OF THE BASIC CJMMAND TO LOS 63
APPENDIX D: PROGRAM OF THE MANEUVERING TARGET 65
APPENDIX E: PROGRAM OF THE COMMAND TO PSEUDO-LOS 67
APPENDIX F: PROGRAM OF THE BASIC CJMMAND TO LOS WITH TWO-LEVEL RELAY 69
APPENDIX G: PROGRAM OF THE MANEUVERING TARGET WITH ITO-LEVEL RELAY 71
APPENDIX $H:$ PROGRAM OF THE COMMAND TO PSEUDO-LOS WITH TWO-LEVEL RELAY 73
APPENDIX I: PROGRAM OF THE BASIC COMMAND TO LOS ITITH SATURATICN CONTROL 75
APPENDIX J: PROGRAM OF THE MANEUVERING TARGET WITH SATURATION CONTROL 77
APPENDIX K: PROGRAM OF THE COMMAND TO PSEUDO-IOS aITH SATURATION CONTRJL 79
LIST OF REFERENCES 81
INITIAL DISTRIBUTION LIST 82

I. The Basic Los Command Simulation Result 37
II. The Psaudo LoS Command Simulation Result. 39
III. Two-level Relay Coatrol Resule 45
IV. Saturating Linear Control Result (M=1). 49
V. Comparison of the Basic Los Commara Results . . . 59
VI. Comparison of the Maneuvering Target Results . . . 60
VII. Comparison of the Pseudo-Los Comana Results . . . 60

LIST OF FIGURES

2.1 Missile rarget Encounter with LOS Guidance 12
2.2 Basic Geometry 13
2.3 Simplified Guidarce Loop of LOS Guidance 13
3.1 Roland Missile System Operational Schematic 18
4. 1Parabolic Switching Function21
4. 2
. 2Blcck Diagram of ON-OFF Controller21
4. 3 CRE versus Time 22
4.4 Cde versus Time 22
4.5 F versus Time 23
4.6 CRE versus CRE 23
4.7 U versus Time 24
5.1 Simplified Flow Chart of Basic LOS Commard 26
5.2 Geometry of Easic LOS Guidance 27
5.3 Block Diagram of the Basic Los Command 28
5.4 The Basic LOS Command 295.5The Basic LOS Command31
5.6 The Basic LOS Command 32
5.7 The Basic LOS Command 33
5.8 The Maneuvering Tarqet 34
5.9 The Maneuvering rarget 35
5.10 The Maneuvering Target 36
5.11 U versus Time for a Maneuvering Target 37
6.1 Block Diagram of the Pseudo LOS Ccmmand Systen 38
6.2 The Pseudo-LOS Command 40
6.3 The Pseudo-ioS Command 41
6.4 The Pseudo-ioS Command 42
6.5 U versus Time for the Pseudo-LOS Command 43
7.1 Two－Level Relay 45
7.2 U versus Time for the Basiz LOS Guidance 46
7.3 U verse Time against the MVR Tazget withTwo－Level Relay47
7.4 U verse rime of the Pseudo－LOS withTwo－Lavel Relay47
7.5 Linear Switching Relay 48
7.6 The Basic Los Comand（Saturation） 50
7.7 The Basic LOS Command（Saturation） 51The Basic LoS Comand（Sataration）52
7.9 Maneuvering Target（Saturaгion） 53
7.10 Maneuvering Target（Saさuzaさion） 54
7.11 Maneuvering Target（Saturation） 55
7.12 Pseudo－LOS Command（Saturation） 56
7.13 Pseudo－LOS Command（Saturaこion） 57
7.14 Pseudo－LOS Command（Sa亡uration） 58

I．INTRODUCTION

Guided missiles are classified into four broad catego－ ries，depending on launch and targミt position characさeris－ tics．These categories are（1）．ヨir－to－air（2）．air－ to－ground（3）．surface－to－air and（4）．suriace－to－ surface．Each categcry of the above will employ ons or more of the following guidance schemes；programmed command， line－of－sight，lead－angle，proportional navigation homing and inertial．The beam rider guidance is included in the line－of－sight guidance．A number of missiles also use a combination of these methods．For ミxample，the initial part of the missile trajectory may use programmed guidance while the terminal phase may use beam－riaミr．

This thesis discusses the surface－tc－air missile controlled by on－off，thrust vectoz，control．Consideration was given to determine the effects of the two－level relay and the saturation linear control．In order to verify the results，it was tested by using the type of control for three different types of missile－target scenarios：
（1）．LOS command against non－manəuvering target
（2）．LOS command against maneuvering target
（3）．Pseudo－LOS command against non－maneuvering target． In chapter 2，a discussion of a line－of－sight guidance was presented and a practical example of it was shown in chapter 3．The general concept of on－off control was described in chapter 4．The simulation results of the basic command to line－of－sight against both a non－maneuvering and a maneuvering target were shown in chapters 5 and that of pseudo－LOS case was in chapter 6．Pinally，a discussior of two－level relay and saturating linear control was presented in chapter 7．A table of variables which were used in this
thesis is shown in the Appendix A. Computer simulation was accomplished using Digital Simulation ianguage, DSL.

II. OVERYIEG OF LINE=OF-SIGEI GUIDANCE CONTROI

A LOS system can be called a "3-point" gu̇dance systea since there is one point which defines the tracker, another the target and a third which defines the position of the missile. The object of the guidance system is to constrain the missile to lie as nearly as possible on the line joining the tracker and the target called the Iine Of Sight (LOS). The concept is simple and can be implemented in many ways; perhaps it is this apparent simplicity which explains why many of the guided weapon systems as yet designed are LoS system.
 and a missile flying at a different angle but constant speed, having been launched when the target occupies a position TO (see Eigure 2.1).

After intervals of time of $1,2,3$ etc seconds the LOS is shown as OT1.OT2.OT3 etc. Since the missile ideally always lies on these lines the flight path will be a curved one, for an approaching target. the curvature becomes increasingly severe towards the end of the engagement. We note that the tangent to the flight path at $\exists \mathrm{n} y$ one point defines the instantaneous direction of the missile velocity. It is seen that the missile velocity vector will, in general, not be directed along the LOS; towards the end of the engagement it may be at a considerable angle to it [Ref. 1].

In an actual situation the guidance signals transmitted to the missile are the demanded lateral accelerations (LATAX) in two axes at the right angles to the beam. These demands are resolved into missile axes within the missile. An error compensation term endeavouring to keep the error off the beam $\left(\sigma_{m}\right)$ equal to $z \in I o$.

launcher

Figure 2. 1 Missile Target Encounter with LoS Guidance

A basic geomet=y and a simplified guidanceloop are shown in Figure 2.2 and Pigure 2.3.

Suppose that the cross range error (CRE) of Figure 2.2 can be measured either directly or by means of the angular difference between $O T$ and $O M$, tog ther with some knowledge of missile range (Rm), then

$$
\begin{equation*}
C R E=R \mathbb{R}\left(\sigma_{t}-\sigma_{m}\right) \tag{2.1}
\end{equation*}
$$

If this error off the beam is used as an acceleration demand 0, it needs some damping so that good response characteristics are obtained. A dynamic equation of the form

$$
\begin{equation*}
C \dot{R} \bar{S}=G 1(C \dot{R} E)+G 2(C R E) \tag{2.2}
\end{equation*}
$$

needs to be satisfied, where G1 and G2 ane constants. This necessity leads immediately to the consideration of a filtered error. In the presence of noise on the sight-line,

Figure 2.2 Basic Geometry

Figure 2.3 Simplified Guidance Loop of LOS Guidance
and hence on the crcss range error, CRE, such a filez design is not simple and becomes a compromise between requirements for smoothing the noiss and giving an adequate Iesponse to a demand. Modern techniques allow filters to be designed statistically if soms knowledge of the noise characteristics is available or can be assumed. Figure 2.3 shows the position of such a filter $F(s)$ in the guidance loop. It includes a gain G, and the acceleration demand is

$$
\begin{equation*}
U=F(s) R \pi\left(\sigma_{t}-\sigma_{m}\right) \tag{2,3}
\end{equation*}
$$

The missile transfer function is zepresentsd by $A(s)$ and when the achievod acceleration is doubly integrated and divided by Ra it represents a new measure of the missile beam angle $\left(\sigma_{m}\right)$, thus closing the loop wher differenced with the target beam angle (σ_{t}).

While this concept is simply a los or beam riding guidance situation it is by no means as clear in homing how a guidance law can be devised in the absence of information on missile and target positions [Ref. 2].

III. TYPICAL ENGAGEMENT SEOUENCE

In order to provide a "vehicle" through which to better understand the basic aspects of command to line-of-sight guidance methodology, the engageajat sequence of a shortrange, air-defense, missile system is lascribed. The Roland system was selected because the general operational aspects of the system are available ar the unclassified level [Ref. 4].

The entry of one or more aerial tazgets into the range of the search radar is indicated to the Roland vehicle commander by an audible tone. At che same time, a synthetic display of the targets appears on a screen to give the commmander all the informatica neaded to select the most threatening target. The screen inages are different for friendiy and enemy targets. Also, the entry of the earget, into the missile envelope, utilizing target advanced-range computations, is indicated by a change in the display. With the search antenna raised and the search radar activated, target acquisition is possible even when the vehicle is in motion.

There are three modes $\jmath f$ identification, frierd or foe (IPF) interrogation: automatic, manual, and auさomatic within a given range.

When the commander has recognized a target as hostile and decided to engage it, he places a cursor over the scrsen image. This automatically brings tae turret to bear and tracking can commence in either the "radar" or "optical" modes.

In the "radar" mode, the tracking radar automatically accepts target designation from the search radar, searches for, locks onto, and tracks the taryet.

In the "optical" mode, the aimer searches for the taこge in elevation with an optical sight. To aid him an elecrronic instrument displays the maximum theoretical elevation for the search. When the aimer has acquired the target in his cross-hairs, he keeps the target in his sight by manipulating a control stick. This control keeps the target properly positioned by moving the turret in azimuth and swivelling a mirror in elevation.

As soon as the commander confirms that the target is
 the "radar" mode, or authorizes "oprical" mode firing
 then, can initiate , he firing sequence.

The missile is guided by a command to line-of-sight technique. This means that the target is tracked optically or by radar and the deviaticn of the missile from this line of sight is determined and corrected by a guidance command. The commander may switch from "radar" to "optical" and back again, as desired, even after the missile has been laurched.

Target tracking and determination of the aissile's deviation from the line of sight are different for each mode. In the "radar" mode, the guidance $=a d a r$ has two receiving channels. Onミ is used for target tracking and the other is used to locate the missile in the radar lobe through reception of the missile's radis frequency beacons. By comparing these angles, an error between the missile and the ta=get line of sight can be determined. In the "optical" mode, a biaxially-stabilized mirror is maaually controlled to keep the target vertically in the aimer's sight and the turret is Iotated to the azimuth of the target line of sight. An infrared goniometer is mounted to provide misile angle from the tracker by following flares mounted on the rear of the missile. Then, a deviation of the missile angle from the target line of sight can be determined.

Two groups of signals are introduced into the command computer: the velocity of the line of sight in azimuth and elevation, and the deviation of the missile from the line of sight in azimuth andelevation. Based upon data from the line-of-sight movement and the angular deviations of the missile, the necessary guidance signals are calculated.

The guidance signals are 工elayed to the missile by a transmitter with highly directional characteristics. The command-transmitting antenna is slaved to the missile angle in both azimuth and elevation. It, therefore, is trained on the missile continuously.

The side forces required for missile course corrections are produced through deflection of the exhaust jet of the sustainer motor by spoilers at the rear of the missile (thrust-vector control).

When the missile reaches the point of impact with the target, the warhead is detonatez by either percussion, contact fuse or the radiv-frequency, proximizy fuse. The warhead consists of'a radial-єffect, multiple-f=agmentation charge.

Figure 3.1 presents an operational schematic of the basic Roland missile system operation.

The computer simulations contained herein are generic ir nature within the command to line-os-sight guided-missile type and have only reasonable estimates of missile capabilities introduced. This ensures unclassified results. At the same time, the simulations are of sufficient complexity to properly weigh the relative merits of the guidance variations discussed [Ref. 3].

Figure 3.1 Boland Missile Systen Operational Schematic

IV. ON-OFF (BANG=BBNNG) CONTROL

As discussed before, LOS guidance maintains a missile position on the LOS. Usually missile position has a cross range error (CRE) and we want to reduce this error to zero in the minimum time. This kind of problem can be solved by using the on-off control. The basic concept of this is that:

Given a system for which the drive is limited (has a maximum or saturation value), the fastest response is obtained if maximum forward drive is applied at $t=0$, and is reversed at \mathfrak{a} proper instant $t=t 1$ so that deceleration under maximum reverse drive reduces the velocity to zero at precisely the command value of the output. The drive is then set to zero.

The ideal relay permits only two conditions; full acceleration and full deceleration [Ref. 5].

From the Bang-Bang control law, we can derive the switching function which makes the error go to zero by using the proper switching time. From Newton's second law;
$F=m C R E$
$C \dot{R} \dot{E}=-\frac{d}{d t}(C \dot{R} E)=-\frac{E}{I}=U$
$C \dot{R} E=\quad \subset \dot{R} \dot{E} d t=U t+k 1$
But at $t=0, c \dot{\text { ce e }}=0$ and $k 1=0$. Therefore

$$
\begin{equation*}
C \dot{R} E=-\frac{d}{d t}-(C R E)=U t \tag{4,1}
\end{equation*}
$$

GRE $=\operatorname{CRE} d t=0 t^{2}+k 2$

From the equation 4.1

$$
\begin{align*}
& t=C \dot{R} E / U \\
& t^{2}=(C \dot{R} E / U)^{2} \tag{4.3}
\end{align*}
$$

Substitute equation 4.3 into equation 4.2

$$
\begin{align*}
\operatorname{CRE} & =(\mathrm{U} / 2)(\mathrm{CRE} / \mathrm{U})^{2}+\mathrm{k}^{2} \\
& =(\mathrm{CRE})^{2} /(2 \mathrm{U})+\mathrm{k}^{2} \tag{4.4}
\end{align*}
$$

where $k 2$ is integration constant. But if we apply a full deceleration at the halfway point, che equation 4.4 becomes

$$
\begin{equation*}
F=(C \dot{R} E|C \dot{R} E|) /(2 U)+C R E \tag{4.5}
\end{equation*}
$$

and is called the ERROR PUNCTION. U will be

$$
U= \pm G
$$

or

$$
\begin{equation*}
U=-(G) \quad S I G N(F) \tag{4.6}
\end{equation*}
$$

Equations 4.5 and 4.6 represent the SAITCHING FUNCTION which makes the error go to zero in the minimum time. The switching function and the block diagram of the on-off controller are depicted on the figures 4.1 and 4.2. And we can obtain the cross range error, CRE, by doubly integrating U with the initial condition of CRE. Ne have

$$
\begin{align*}
& \mathrm{CRE}=U d t+C \dot{R E}(0) \\
& C R E=C \dot{R E} d t+\operatorname{CRE}(0) \tag{4.7}
\end{align*}
$$

The simulation results of these equations are giver on Figures 4.3 through 4.7 and the computer program is attached (see Appendix B).

Pigure 4. 1 Parabolic Switching Function

Figure 4. 2 Block Diagram of ON-OFP Controller

Figure 4.3 CRE versus Time

Pigure 4.4 C户́B versus Time

Figure 4.5 P versus Time

Figure 4.6 CRE versus CRE

Figure $4.7 \quad 0$ versus Time

V. BASIC COMBAND TO LINE=OP-SIGHT SIMOLATION

A. SCENARIO

The engagement was designed with the ground tracker and missile launching unit located at ta origin.

The target was flown accross the first quadrant from a position 4000 meters on the x-axis and 1000 meters on the y-axis (4000,1000). The velocity vector of the targeさ was parallel to the x-axis and magnitude was 250 meters per second.

Since most missiles need a few seconds of boost, the missile is not contrclled during this time. We assumed that the missile was controlled after ona second fron the firing time and controlled by PROGRAMED GUIDANCE up to this time. After the time of missile "captara", the missile was controlled by the on-cff. TVC method with the LoS guidance law. The simplified flow chart is shown in the Figure 5.1.

In order to simplify the problem, we assumed that:

1) the velocity vector of missile , VM, was parallel to the $L O S$ between the target and origin and the magnitude of $V m$ was constant, 50 geters per second:
2) the Latax was applied to the missile at right angles to the LOS. This was a reasonable assumption for this kind of missile. So the angle $\phi+\sigma_{m}$ in the Figure 2.2 is almost same to angle σ_{t};
3) the measurement noise was zero so we omitted the filter, $F(s)$;
4) the magnitude of Latax was 150 meters/secozd ${ }^{2}$ which was about 15 Gs.
The geometry depicted in Figure 5.2 summarizes the geometric situation.

Pigare 5.1

Figure 5.2 Geometry of Basic LOS Guidance

For mathmatical convenience of simulation, we need to define the sign of the CRE and the LATAX as follow:
+|CRE| : When the missile position is upper-side of LOS
-|CRE| : when the missile position is lower-side of LOS

+ IUl : when the LaraX is upward dinection
- IUl : when the LATAX is downward dizection

This sign was based on the positive $\sigma_{m t} w h i c h$ is defined when σ_{m} is greater than σ_{t}.

B. PROGRAMAED GUIDANCE PHASE

Since the major emphasis of this paper was on-off control. we assumed that the missile flew along the ios during the programmed guidance phase. But. in a practical situation, there is some cross range error which is occured by disturbances such as wind, propulsion system and
autopilot time delay.etc. Hence we made imitialization errors, and the on-off control started with these errors.
C. ON-OFF, THRUST VECTOR, MISSILE CONTROL

The detail of the on-off cont=ol was discussed before, hence we applied this to the LOS guidance schsme. The block diagram of this system is depicted in the figure 5.3 [Ref. 3].

In order to determine the $C R E$ the trackez estimates the missile's lange (R⿴囗 , by the olapsed time of flight and the missile's velocity profile. The program of this simulation is attached in Appendix C.

Figure 5.3 Block Diagram of the Basic LOS Comand

D. SIMULATIOA RESULTS

Figure 5.4 shows the missile and target geometry in $X-Y$ plane. The missile intercepted the target at the point A 2605,1000 with the almost zero miss distance.

Figure $5.5(a)$ shows the distance betweer target and missile versus time. The distance decreased linearly and neared zero at the time at 5.58 seconds.

Pigure 5.4 The Basic LOS Command

Figure $5.5(\mathrm{~b})$ shows the CRE versus time. The initial cross range error at the missile capture time ore second after firing was about 50 meters. Since the CRE $a \pm$ the "missile capture time" was positive, the CRE increased initially. So the maximum CRE was about 58.2 meters at the time 1.330 seconds. Then it decreased to almost zero meter at 2.55 seconds. To get a faster response, de should increase the magnitude of the LaTAX. We should note here
that the CRE does not maintain zero value because we dia not corsider the target motion terms in this phase of the simulation [Ref. 2]. So the missile had some small cross range error and the BANG-BANG controller had tried to reduce this error in a chatter-mode.

Figure 5.6(a) shows the CRE versus time. Figure $5.6(b)$ shows the CRE versus CRE. As we expeceed this curve EOllowed the SWITCHING FUNCTION as shown in figure 4.4. Figures 5.7 (a) and 5.7(b) show the \bar{F} versus time and tine u versus time.

This program was tested using maneuvering targets and the results were almost same excepe the impact position. The results of this simulation were shown on the Figures 5.8 through 5.11 and the program is atcached in Appendix D. The comparison of these simulations is summarized in Table I.

(b). CRE versus Time
The Basic LOS Command
Pigure 5.5
ONHWWDJ JISHZ
ヨHJ 5 SA $0 \exists H J$

Figure 5.6 The Basic LOS Command
 ERROR (F) VS TIME
BRSIC COMMAND

The Basic LOS Command

Pigure 5.7

ile-Target Distance
versus Time
The Maneuvering Target

Yigure 5.8

MSL - TGG TRAJECTORY Y-COORDINATE VS. X-COORDINATE
 ヨIUNIOYODJ-

 $>1$0e "008 00.081 00.0ni 00.027 00.001
$00.025 \quad 00.09 \pi \quad 00.03 n \quad 00.096 \quad 00.066 \quad 00.0 \eta^{2} \quad 00.091 \quad 00.031 \quad 00.90 \quad 00.8$
(a) Missile-Target Trajectory
CRED VS TIME
WITH MANEUVERING TARGET

ERROR (F) VS. TIME
WITH MANEUVEAING TARGET

Pigure 5. 10

Figure 5.11 versus Time for a Maneuvering Target

TABLE I
The Basic LOS Command Simulation Result

NON-MANEUVRING TARGET

- time (control $\frac{\overline{9}}{4} 1.0 \mathrm{sec}$ $C R E(0)=49.910(m)$
$C R E D(0)=49.832(m / s e c)$

- time (intercept) $=5.58$ sec

distance $=0.34894$ (m)

MANEUVERING TARGET
$4.0 .5 e c(m)$
$49.891(\mathrm{~m} / \mathrm{sec})$
$1.33(s \in c)$
$58.201(m)$
$5.617^{52 c}$
$-6.5448^{9}(1057.7)$

$\nabla 1$. PSEDDO-LOS COMMAND SIMULATION

The guidance scheme ci the lead angle command is almost the same as that of the basic LOS command. Instead of the tracker-to-target line-of-sight this guidance scheme uses the tracker-to-estimated impact point and is called "synthetic line-of-sight" (SLOS) . or "pseudo line-of-sight". The missile is controlled to fly along this pseudo line-ofsight. The block diagram of this system is easily modified from that of the basic LOS and is shown in Figure 6. 1.

The estimated impact point at the instantious time is calculated by using the "time to go" (Tg) and the "closing velociry" (VC) between the target and the missile.

Figure 6.1 Block Diagran of the Psendo LOS Command System

The "closing velocity" and "time to go" are calculated as follow:

$$
\begin{aligned}
V c & =\left((V t x-V m x)^{2}+(V t y-V m y)^{2}\right)^{1 / 2} \\
T g & =(\text { distance between target and aissile) /Vc } \\
& =\left((X t-X m)^{2}+(Y t-Y m)^{2}\right)^{1 / 2} / V c
\end{aligned}
$$

The missile goes to the impact point directly. The simulation result is almost same as in the basic los case. On Other hand, this guidance scheme is poor in a ECM situation. In order to compare the results we usad the same data as that of the basic LoS command. These are shown in Figures 6.2 through 6.5 and the sumarized results are shown in Table II. The computer program is attached ir Appendix E.

TABLE II

The pseudo LoS Command Simulation Result
$-\operatorname{time}(c$ On $=I 01)$
CRE
CRED (0)
$-\operatorname{Cime}($ MAZ $C R E)$
-time (intercept)
$(X \mathrm{X}, \mathrm{Ym})$
$(X \mathrm{YE}, \mathrm{Yt})$
miss-distance

$$
\begin{aligned}
& 1.0 \mathrm{sec} \\
& 49.912(\mathrm{~m}) \\
& 49.828(\mathrm{~m} / \mathrm{sec}) \\
& 1.33 \mathrm{sec} \\
& 58.184(\mathrm{~m}) \\
& 5.58 \mathrm{sec} \\
& (2604.7999 .92) \\
& 26050 \mathrm{O} 0000.0) \\
& 0.9572 \mathrm{E}-5(\mathrm{~m})
\end{aligned}
$$

保
CRED VS TIME
PSUEDO - LOS COMMAND

CRE VS TIME
PSUEDO - LOS COMMAND

ERROR (F) VS. TIME
PSUEDO - LOS COMMAND

9

Figure 6.5 0 Versus i me for the pseado-LOS Comand

VII. SIMOLATIONS WITH THO-LEVEL RELAP AND SATURATION CONTROL

The Los guidance with an "idəal" relay nas been discussed. In this chapter, the effect of the different types of lateral acceleration demand are discussed. In order to compare the results with the previous simulations, the same parameters were used.

A. TWO-LEDEL RELAY

The large magnitude of the Latax makes a fast response. But in the case of small CRE, a saaller magnitude of LATAX is needed. This idea was developed in a "tиo-level" relay as shown on the figures 7.1(a;b). fte shaded area on Figure $7.2(b)$ shows the region of a laer level of Latax in the "CRE verse CRE" phase plain. It provided the minimum overcorrection. The computer programs were easily modified by adding one statement,

IF ((|CRE|+ にRED|).LT. M) $G=3 /(N 1 / N 2)$.
We used the values $150 \mathrm{~m} / \mathrm{sec}^{2}$ for $N 1$ and $15 \mathrm{~m} / \mathrm{sec}^{2}$ for N2 and 1.0 for M in the simulations of the basic los command and the pseudo LOS ccmmand. The resules were almost the same as the previous, except in the figure for "U versus time". Table III summarized these simulation results and figures 7.2. 7.3 and 7.4 show the $" 0$ versus time" of each case. The programs were attached in Appendix F, G and H.

Figure 7.1 Two-Level Relay

TABLE III
Two-Level Relay Control Result

UNIT	NON	MVR-T $\mathrm{G}^{\text {T }}$	PSEUDO-LOS
. time (ccntrol)	1.0	1.0	1.0
CRE (0)	49.910	49.907	49.910
CRED (0)	49.832	49.891	49.828
$\begin{aligned} & \cdot \operatorname{tim} \in(\operatorname{MAX} \cdot C R E) \\ & \operatorname{CRE}(\max) \end{aligned}$	$\begin{aligned} & 1.33 \\ & 58.184 \end{aligned}$	$\begin{aligned} & 1.33 \\ & 58.201 \end{aligned}$	$\begin{aligned} & 1.33 \\ & 58.184 \end{aligned}$
- time (intercept) XII	5.58 2604.7	5.61. 2597.9	5.58 2604.7
Yılum	299.88	1057.7	-999.92
Yt	2605.0	2597.5	2605.0
Yt	$1000 \cdot 0$	1057.5	1000.0
CRE	-2.63E-6	-3.63E-6	$5.03 \mathrm{E}-8$
miss-distance	0.34894	0.47889	0.35137

Figure 7.2 J versus Time for the Basic LoS Guidance

B. SATORATING LINEAR CONTROL

In the previous section the two-level relay was discussed. The "sautrating linear control" as depicted in the Figure $7.5(a)$ and $7.5(b)$ was \exists lso studied. The shaded area on the Figure $7.5(b)$ shows the region of linear control in the "Cỉe versus CRE" phase planə. The computer programs were easily modified by adding one statement,

IF (ABS (F).LE.M) $U=-G * F / M$.
The value of "M" determines the linear region for F. The Figures 7.6 through 7.8 show the simulation results of the basic LoS command against the non-maneuvering target case for "M" きqual 1. 5 and 10. When choosing the value "M" equal to "one", the intercept time and miss distance are almost the same as the counterpart of the ideal relay case. Hence the saturating linear conrrol can be used in practice

 Two-Level Relay

Figure $7.4 \quad 0 \quad$ verse Time of the Pseudo-LOS with Two-Level Relay
instead of the ideal Eelay by choosing a proper value cf "M". The summarized results are in the Table IV.
Figures 7.9 through 7.11 show the results of the mareuvering target case and Figures 7.12 through 7.14 show the results of the pseuab-LOS case. These programs are giver in Appendix I, J and K.

Figure 7.5 Linear Switching Relay

TABLE IV.

Saturating Linear Control Result ($\quad[=1$)

UNIT	NON二MVR	$\underline{M} \underline{R}=\underline{T} \underline{T}$	PSEUDO-LOS
$\begin{aligned} & \text { - time (control) } \\ & \text { CRE (}(0) \\ & \text { CRED }(0) \end{aligned}$	$\begin{aligned} & 1.0 \\ & 49.910 \\ & 49.832 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 49.907 \\ & 49.891 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 49.912 \\ & 49.828 \end{aligned}$
	$\begin{aligned} & 1.33 \\ & 58.184 \end{aligned}$	58.33 201	$\begin{aligned} & 1.33 \\ & 58.184 \end{aligned}$
- time (intercept) XIm	$\begin{aligned} & 5.58 \\ & 2604.7 \end{aligned}$	5.61. 2598.0	5.58 2604.7
Ym	999.84	1057.6	999.88
Xt	2605.0	2597.5	2605.0
Yt	1000.0	1057.5	1000.0
CRE	-. 0349	-. 0702	-. 0349
miss-distance	0.3507	0.4841	0.3492

Figure 7.6 The Basic LoS Command (Saturation)
CRED VS CRE
SATURATION CONTROL

[^0]SAIURAIION CONTROL
$$
\text { Pigure } 7.8 \text { The Basic LoS Command (Saturation) }
$$
MSL-TGT DISTANCE VS TIME

(b). Missile-Target Distance versus Time
Maneavering Target (Saturation)
Figure 7.9

WITH MANEUVERING TARGET

Figure 7.12 Pseudo-LoS Command (Saturation)
CRED VS CRE
PSEUDO - LOS
CO

Figure 7.14 Pseudo-LOS Command (Saturation)

VIII. COMCLOSION

The comparision of results for the ideal relay. twolevel relay and saturating linear cont=ol against the basic LOS command and pseudo-LOS command against a nor-maneuvering target and maneuvering target are provided in the rables ∇. VI and VII. These simulation resules clearly demonstate that "on-off" control of a missile is highly desireable and that "saturating linear control" of a missilehas little adverse effects compared to an "ideal relay" control.

TABLE ∇

Comparison of the Basic LOS Command Results

UNIT	IDEAL	THO-LEVEL	SATURATION
RELAY	RELAY	CONTROL	

TABLE VI
Comparison of the Maneuvering Target Results

UNIT	IDEAL RELAY	$\begin{gathered} \text { IWO-LEVEL } \\ \text { RELAY } \end{gathered}$	SATURATION CONTROL
- time (ccntrol)			
CRE (0)	49.907	49.907	49.907
CRED (0)	49.891	49.891	49.891
$\begin{aligned} & -\operatorname{time(MAX.CRE)} \\ & \text { CRE(max) } \end{aligned}$	$\begin{aligned} & 1.33 \\ & 58.201 \end{aligned}$	$\frac{1}{5} 8.3301$	$\begin{aligned} & 1.33 \\ & 58.201 \end{aligned}$
- Xim $^{\text {a }}$ me (intercept)	$\begin{aligned} & 5.61 \\ & 2597.5 \end{aligned}$	5.61.	5.61.
Y磈	2597.5	2597.5	2597.5
CRE	-6. $54 \mathrm{E}-6$	$3.63 \mathrm{E}-6$	-0.0702
miss-distance	0.47889	0.47889	0.4841

TABLE VII

Comparison of the P seudo-LOS Command Results

UNIT	IDEAL RELAY	THO-IEVEL	SATURATION CONTROL
-time (control)			
CRE (O) CRED (0)	$\begin{aligned} & 49.912 \\ & 49.828 \end{aligned}$	$\begin{array}{r} 49.910 \\ 49.828 \end{array}$	$\begin{aligned} & 49.912 \\ & 49.828 \end{aligned}$
$\begin{aligned} & \text { - time (MAX.CRE) } \\ & \text { CRE(max) } \end{aligned}$	$\begin{aligned} & 1.33 \\ & 58.184 \end{aligned}$	$\begin{aligned} & 1.33 \\ & 58.184 \end{aligned}$	$\begin{aligned} & 1.33 \\ & 58.184 \end{aligned}$
- time (intercept)	5.58 2604.7	5.58 2604.7	5.58 2604.7
XIm	2699.92	2699.92	2699.92
CRE	2.96E-5	$5.03 \mathrm{E}-8$	2.96E-5
miss-distance	0.35137	0.35137	0.35137

APPENDIX A

VarIables LISt

$\begin{aligned} & \text { DIAGRAM } \\ & \text { VARIABLES } \end{aligned}$	COMPUTER VARIABLES	NOUN DESこRIPTION
CRE	CRE	cross-range-error
CRE	CRED	rate of aross-range-erzor change
F	F	erエor function
G	G	magnitude of lateral acceleration
0	0	missile's lateral acceleration
$6 t$	S IG T	angle between the LOS to target and X-axis
$\sigma_{\text {m }}$	S IGM	angle between the beam to missile and $X-a x i s$
σ_{mt}	SIGMT	angle difference betweer m and τ
Vc	VC	crossing velocity
tg	TG	time to go
$t(c o n t r o l) ~$	TCON	beginning time of on-off control
SLOS	SLOS	synthetic line-of-sight
XII	$X M$	X-coordinate of missile position
Yn	YM	Y-coordiaate of missile position
Xt	X T	x-coordinate of taiget position
It	YT	Y-coordinate of target position
Vm	VM	velocity of the missile
$\nabla \pm$	∇T	velocity of the target
$\mathrm{Vm} \times$	VMX	X-component of missile's velocity
Vmp	$\nabla M Y$	Y-component of missile's velocity
∇ tx	VTX	X-component of target's velocity
∇ ¢Y	VTY	Y-component of target's velocity

APPENDIX B

PROGRAM OF TEE SWICHING FUNCTION

$$
\begin{aligned}
& C R E=1.0 \\
& C R E D=0 . \\
& A C R E D=0 .
\end{aligned}
$$

DERIVATIVE

NOSORT

SAMPLE

TERMINAL

CALL DRWG $\left(\begin{array}{l}1,1, T I M E, C R E) \\ \text { CALL DRWG } \\ 2,1, C R E, C R E D\end{array}\right)$
CALL DRWG $3,1, T I M E, F)$

CONTRL FINTIM=2, 1.DE LTMOT) $1.01 . D E L S=0 . ว 1$ PRINT O.1,G,F, U, CRE,CRED END

APPENDIZ C

PROGRAB OF THE BASIC COMMAND TO LOS

 DERIVATIVE
 NOSORT

*** TARGET FARAMETERS ***

$$
\begin{aligned}
& V T X=V T * C O S \\
& V T Y=V A M P)
\end{aligned}
$$

$X T=V T X T I M E+X T 0$
YT = ${ }^{2} T Y * T I M E+Y \Gamma 0$
SIGT = ATAN2 (YT, XT)
IF (IIME.GE.TCON) GO TO 50

*** MISSLE EARAMETERS ***

* PROGRAMMED GUIDANCE **************************************

***********************れ*****
* ON-OFF GUIDANCE (BANG-BANG CONTROC) ********************* *****************************

50 CONTINUE
*
$G=150$.
$A C R E D=A B S$ (CRED)
$F=C R E+(C R E D * A C R E D) /(2 * G)$

$C R E D=$ INTGRI $0.0^{\circ} \mathrm{G} 2$
*
CRE = INTGRL (CRE, CRED)
$R M=\nabla M * T I M E$
A3 $=C R E / R M(A 3)$
SIGM $=$ SIGT + SIGMT
$\left.\begin{array}{l}X M=R M * \operatorname{COS}(S I G M) \\ Y M=R M * \operatorname{SIN}(S I G M\end{array}\right)$
 200

CONTINDE
*
 *** MISSION RESUIT *** KILL $=0$; TGT MISSED

$X D I S T=X T-X M$
$Y D I S T=Y T-Y M$
DIST $=$ SQRT (XDIST**2 + YDIST**2)
IF (DIST:IE.5) KILL $=1$
IF (XM.GT. (XT+30)) CALL ENDJOB

*

SORT

 SAMPLE

CALL DRWG $\left(1,1, \times \mathbb{X}, \frac{Y}{M}\right)$
CALL DRWG $\{1.2, X T, Y T\}$

CALL DRWG (5: $1, \mathrm{CRE}$. CRED)
CAIL DRVG 6,1 , TIME,F)
TERMINAL

CALL DRWG $7,1, T I M E, U)$

CALI ENDRW (NPLOT)
CONTRL FINTTM=6.0.DELT=0.001, DELS=0.003
PRINT $0.005, X M, Y M, X T, Y T, C R E, C R E D, D I S T, K I L L$
END
STOP

APRENDIX D
 PROGRAM OF THE MANEUVERING TARGET

市
 DERIVATIVE

NOSORT
 *** TARGET PARAMETERS ***

VTX $=V T * \operatorname{COS}(G A M T)$
$V T Y=V T * S I N(G A M T)$
$X T=V T X * T I E+X T 0$
YT = 100*SIN(0.5*DI*TIME) + YTO
SIGT = ATAN2 (YT:XT)
IF (IIME.GE.TCON) GO TO 50

*** MISSLE EARAMETERS ***

* ON-OFF GUIDANCE (BANG-BANG CONTRJC) *********************

50 CONTINOE
$G=150$.
ACRED $=A B S$ (CRED)
$F=C R E+(C R E D * A C R E D) /(2 * G)$
U $=$-G $*$ SIGN $1 \cdot{ }^{\text {P }}$)
CRED $=$ INTGRI 0.0 U
$C R E=I N T G R L(C R E, C R E D)$
$A C R E=A B S$ (CRE)
*
RM $=V M * T I M E$
A 3 = $=$ RE/RM
SIGMI $=$ ARSIN (A3)
SIGM $=$ SIGT + SIGMT
 200 CONTINUE
*
 *** MISSION RESULI * * \quad KIII $=0$; TGT MISSED

*

 SAMPLE

TERMINAL

CONTRL FINTLM= ENDRW (NPLOT)
PRINT O.OO5, XM,YM,XT,XT,CRE,CRED,DIST,KILI
END
STOP

```
APPENDIX E
PROG BAM OF THE COMMAND TO PSEUDO-LOS
```

```
*
\(X T 0=4000\).
\(\mathrm{YTO}=1000\).
\(T G=0\).
\(f=0\).
\(\mathrm{GAMT}=\mathrm{PI}\)
TITLE
TITLE
TITLE
INTEG
INTGER
CONST
CONST
INITIAL
```

```
PSEUDO - LOS COMMAND
```

PSEUDO - LOS COMMAND

```
PSEUDO - LOS COMMAND
    WITHEIDEAL RELAY
    WITHEIDEAL RELAY
    WITHEIDEAL RELAY
    #**ITHEIDEAI RELAY
    #**ITHEIDEAI RELAY
    #**ITHEIDEAI RELAY
RKSFX
RKSFX
RKSFX
NPLOT,KILL
NPLOT,KILL
NPLOT,KILL
NPLOT=1,T CO N=1.0
NPLOT=1,T CO N=1.0
NPLOT=1,T CO N=1.0
VM=500.:VT=250:PI= 3.141593.KILI=0
```

VM=500.:VT=250:PI= 3.141593.KILI=0

```
VM=500.:VT=250:PI= 3.141593.KILI=0
```

```
INTGER
\(X T 0=4000\).
\(\mathrm{YT}=1000\).
\(\mathrm{TG}=0\).
\(\mathrm{f}=0\).
\(\mathrm{GAMT}=\mathrm{PI}\)
```

 NOSORT

*** TARGET EARAMETERS ***

$\begin{aligned} & \nabla T X= \\ & V T Y= \end{aligned}$	$\begin{aligned} & V T * \operatorname{COS}(G A M I) \\ & V T * S I N(G A M T \end{aligned}$
$X T=\nabla$	VTX*TIME + X 0
$Y T=V$	VTY*TIME + YTO
SIGT $=$	$=\mathrm{ATAN2} 2(Y \mathrm{~T}, \mathrm{XT})$
XLOS $=$	$=X I+V T X * T G$
YLOS $=$	$=Y T+V T Y * T G$
SLOS $=$	- ATAN2 (YLOS. XLOS)
IF (TI	IME.GE.ICON) GO TO

*********************\#\#\#*
*** MISSIE PARAMETERS ***

* ON-OFF GUIDANCE (BANG-BANG CONTROL) **\#\#\#\#\#\#\#\#\#\#\#********

*

50 CONTINUE
*
$G=150$.
$A C R E D=A B S$ (CRED)
$\mathrm{F}=\mathrm{CRE}+$ (CRED*ACRED)/(2*G)
$\mathrm{U}=-\mathrm{E}$ * $\mathrm{SIGN}\left(1 \cdot \mathrm{~B}^{\mathrm{F}}\right)$
CRED $=$ INTGRL $(0.0 .0)$
CRE = INIGRL (CRE, CRED)
*
$R M=V M * T I M E$

```
    A3 = CRE/RM
    SIGMS = ARSIN(A3)
    SIGMM= SLOS + SIGMS
    VMY = VM* SIN(SLOS
    XM = RM * COS (SIGM)
    YM = RM * SIN(SIGM)
```



```
    200
    CONTINUE
```



```
            XDIST = XT- XM
    YDIST = YT-YM
    DIST = SQRT(XDIST**2 + YDIST**2)
    VC=SQRT(VTX-VMX)**2+(VTY-VMY)**2)
    TG= DIST/VC
IF (DIST (LEE.5
IF (XM,GT. (XT+3O))CALI ENDJOB
SORT
```



``` SAMPLE
```


TERMINAL
CALL ENDR (NPLOT)
CONTRI FINTIM=5.9.DELT=0.001. DELS=0.003
PRINT O.1.TG,XM,YM,XT,YT,CRE,CRED, DIST,KIIL
END
STOP

ARPENDIX
 PROGRAA OF IHE BASIC COMMAND TO LJS WITH TWO-LEVEL RELAY

TITIE
TITLE
TITLE
INTEG
INTGER
CONST
CONST
INITIAL

$$
\begin{aligned}
& X T O=4000 . \\
& Y T O=10000 . \\
& G A M T=0 .
\end{aligned}
$$

*

 DERIVATIVE
 NOSORT

*** TARGET PARAMETERS $\neq * *$

훟 MISSLE PARAMETERS 훛

SIGM $=$ SIGT+0.1

VXM	$V M * \operatorname{COS}(S I G M)$
VYM	$V M * S I N(S I G M)$
XM	INTGRI (0.,VXM)
Y M	INTGEL (0.gVM)
RM	SQRT (XM** $2+\mathrm{YM}$ + ${ }^{\text {+ }}$ 2)
SIGMI	= SIGM-SIGT
CRE =	RM* SIN (SIGMT)
RED	DERIV (0., CRE)
GO TO	200

50 CONTINOE
ㅎ
$G=150$.
$A C R E=A B S$ (CRE)
ACRED = ABS (CRED)
IF ($(A C R E+A C R E D)$.LT. 1.) $G=15$
$F=C R E+$ (CRED*ACRED)/(2*G)

$C R E D=$
$C R E I N G R I(C R E, C R E D)$
$R M=V M * T I M E$
$A 3=C R E / R M$

```
SIGMT = ARSIN(A3)
SIGM=SIGT + SIGMT
XM=RMM* COS SIGMM
YM = RM* SIN(SIGM)
```



``` 200 CONTINUE
*
```



``` *** MISSION RESUIT ***
```



```
\(X D I S T=X T-X M\)
\(Y D I S T=Y T-Y M\)
DIST = SQRT(XDIST**2 + YDIST**2)
IF (DISTT :LE.5
KILI=0 : TGP MISSED
\#
```

SORT

 SAMPLE

CALL
$\left.\begin{array}{l}\text { DRWG } \\ \text { DRWG }\end{array}\right\}$
$\left\{\begin{array}{l}1,1, X M, Y M \\ 1,2, X T, Y \\ 2\end{array}\right)$
CAII DRWG $2,1, T I M E, D I S T)$
CALL DR'NG
CALI DRWG
CAIL DRWG
CALI DRWG
CALL DRWG
$\left\{\begin{array}{l}3,1, T I M E, C R E) \\ 4,1, T I M E, C R E D) \\ 5,1, C R E, C R E D)\end{array}\right.$

TERMINAL
CALL ENDRW (NELOT)
CONTRL FINTIM=5.9.DELT=0.001.DELS=0.003
PRINT $0.005, X M, Y M, X T, Y T, C R E, C R E D, D I S T, K I L L$
END
STOP

APPENDIX G
 PROGRAM OF THE MANEOVERING TARGET जITH TWO-LEVEL RELAY

TITLE
TITLE
TITIE
INTEG
INTGER
CONST
CONST
INITIAL


```
RKSEX
NPLOT,KILL
NPIOT=1. T CO N=1.0
\(\mathrm{VM}=500 . \mathrm{V} T=250, \mathrm{PI}=3.141593\), \(\mathrm{KI} \mathrm{I} \mathrm{L}=0\)
```

$$
\begin{aligned}
& X T 0=4000 . \\
& Y T 0=1000 . \\
& G A M T=1 . \\
& F=0 .
\end{aligned}
$$

*

DERIVATIVE
 NOSORT

*** TARGET PARAMETERS ***

*** MISSLE PARAMETERS ***

* ON-OFF GUIDANCE (BANG-BANG CONTROL)

*

50 CONTINUE
$G=150$
$A C R E=A B S$ (CRE)
$A C R E D=A B S$ (CRED)
IF ($(A C R E+A C R E D) \cdot L T \cdot 1.) G=15$.
$F=C R E+(C R E D * A C R E D) /(2 * G)$

$\begin{array}{l}C R E D= \\ C R E\end{array}=$ INTGRGL $\left.0.0,0\right)$
$A C R E=A B S$ (CRE)
*
$R M=\nabla M * T I M E$
$\mathrm{A} 3=\mathrm{CRE} / \mathrm{RM}$
 200 CONTINUE
*
 *** MISSION RESULT *** KILI = 0 ; TGT MISSED
********************** KILI = 1 ; TGT DESTROYED

$X D I S T=X T-X M$
 DIST = SQRT (XDIST**2 + YDIST**2)

*

SORT

 SAMPLE

CALL DRWG $\begin{aligned} & 1,1, X M, Y M \\ & \text { CALL DRWG } \\ & 1,2, X T, Y T\end{aligned}$
CALL DRWG 2,1 , TIME.DIST)
CALL DRWG (3.1.TIME,CRE)
CALI DRWG (4,1 , TIME, CRED)
CALI DRWG 5.1, CRE, CRED)
CALL DRWG $\begin{gathered}6,1, T I M E, F) \\ \text { CALL } \\ \text { DRWG } \\ 7,1, T I M E, U)\end{gathered}$
TERMINAL
CALL ENDRW (NPLOT)
CONTRL FINTIM=5.9.DELT=0.001.DELS=0.003
PRINT $0.005, X M, Y M, X T, Y T, C R E, C R E D, D I S T, K I L L$
END
STOP

APPENDIX ㅂ

```
PROGRAM OF THE COMMAND TO PSEODO-LJS MITH TWO-LEVEL RELAY
```

TITLE	PSEUDO－LCS COMMAND
TITLEE	WITH TWO－LEVEL RELAY ＊＊＊＊＊Y EUN，J．Y，＊＊＊＊
INTEG	RKSFX
INTGER	NPLOT，KIL
CONST	NPLOT $=1 . \mathrm{TCON}=1.0$
CONST	$V M=500 . . \nabla T=250, \mathrm{PI}=3.141593, \mathrm{KILL}=0$

$$
\begin{aligned}
& X T O=4000 . \\
& Y T O=1000 . \\
& T G M=0 . \\
& G A M T=0 .
\end{aligned}
$$

＊
 DERIVATIVE
 NOSORT
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
＊＊＊TARGET PARAMETERS＊＊＊
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
$\left.\begin{array}{l}\text { VTX }=V T * C O S(G A M T \\ \forall T Y=V T * S I N G A M T\end{array}\right)$
＊＊＊＊＊＊＊＊＊＊＊
＊＊＊MISSLE FARAMETERS＊＊＊
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
＊PROGRAMMED GUIDANCE＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊

＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
＊ON－OFF GUIDANCE（BANG－BANG CONTRJL）＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊

50 CONTINUE

$$
\begin{aligned}
& G=150 \text {. } \\
& A C R E=A B S \text { (CRE) } \\
& A C R E D=A B S \text { (CRED) } \\
& \text { IF (}(A C R E+A C R E D) \cdot L T .1 .) \quad G=15 \text {. } \\
& \mathrm{F}=こ \mathrm{RE}+\mathrm{CRED*A己} \mathrm{CED}) /(2 * \mathrm{~S}) \\
& \mathrm{U}=-\mathrm{G} \\
& \text { CRED }=\text { INTGRI (0.8 } \mathrm{O}) \\
& \text { CRE = INTGRL (CRE, CRED) }
\end{aligned}
$$

A3 $=\mathrm{CDE}$ IME
CRE/RM
SIGMS = ARSIN(A3)
SIGM $=$ SIOS + SIGMS
$V M X=V M * \operatorname{COS}(S L O S)$
$V M Y=V M *$ SIN SLOS
$X M=R M * \operatorname{COS}$
$Y M=B M * S I G M$

```
    200
    CONTINUE
*
```



```
    XDIST = XT-XM
    DIST = SQRT(XDIST**2 + YDIST**2)
    VC=SQ SRT ((VTX-VMX)**2+(VTY-VMY)**2)
    TG = DIST/VCC.5) KILI = 1
    IF (DIST.IE.5) KILLL=1
    IF (XM .GT. (XT+30))CALL ENDJOB
```

SORT

 SAMPLE

TERMINAL

	D RNG 1
	DRWG
	DRWG $2,1, T I M E, D I S T)$
	DRWG 3 , 1, TIME, CRE)
	DRWG 4,1, TIME, CRED
	DRWG 5
CALL	DRWG (6, 1. TIME, F)
CALL	DRWG (7.1.TIME.U)

CONTRL FINTIM=5NDRH NPLOT) 1 , DELT=0.00 1 , DELS=0.003
PRINT 0.1,TG, XM,YM,XT,YT, CRE,CRED,DIST,KILI END STOP

APPENDIX I

PROGRAM OF THE BASIC COMMAND TO LOS HITH SATURATION CONTROL
TITLE
TITLE
TITIE
INTEG
INTGER
CONST
CONST
PARAM
INITIAL

```
BASI= COMMAND TO L.O.S
    MISSLE CCNTROL
WITH SATURATION CONTROL
RRSFX
NPIOT,KILL, CUR
NPLOT=1.TCON=1.O,COR=1
```



```
M = 1 0 .
XTO = 4000.
YTO = 1000.
GAMT = DI
```

*

DERIVATIVE
 NOSORT

*** TARGET PARAMETERS ***

$\begin{aligned} & \text { VTX }= \\ & \text { VTY } \end{aligned}$	$\begin{aligned} & V T * \operatorname{COS} \text { (GAMT) } \\ & V T * S I N\{G A M I \end{aligned}$
$X T=V$	TX*TIME + XTO
$T=V$	TY*TIME + YT0
IGT	ATAN 2 (YT, XI)
(I	ME.GE.TCON) G

** *
*** MISSLE PARAMETERS ***

$\text { SIGM }=\text { SIGT+0. } 1$
$V Y M=V M * S I N(S I G M)$
$X M=I N T G R L(0 . V X M)$
$Y M=I N T G R L(0 . V Y M)$
RM = SQRT (XM**2 + YM**2)
SIGMT = SIGM SIGT
$C R E=R M *$ SIN (SIGMT)
CRED = DERIV (O.,CRE)
GO TO 200

* ON-OFF GUIDANCE (BANG-BANG CONTROL) ********************* *****************************

50 CONTINOE

$$
200 \text { CONTINUE }
$$

*

 *** MISSION RESULT *** KILL $=0$: TGT MISSED

$$
\begin{aligned}
& \begin{array}{l}
X D I S T \\
Y D I S T \\
=Y T-X M
\end{array} \\
& \text { DIST = SQRT (XDIST**2 + YDIST** } 2 \text {) } \\
& \text { IF (DIST:LE.5) KILL=1 }
\end{aligned}
$$

*

SORT
 *\#\#\#**** OUTPUT AND PLOT CONTROL CARD *********************
 SAMPLE

TERMINAL
CALL DRWG (1, CUR,XM,YM)
CALI DRWG (2.CUR.TIME, DIST)
CALL DRWG C 3:CUR, TIME, CRE $)$

CALL DRNG (6, CUR',TIME', U)

$$
\underset{C O R}{I F} \stackrel{(O R}{=} \underset{C}{=} \cdot E Q \cdot{ }_{+}^{3)} \text { CALL ENDRW (NPLOT) }
$$

CONTRL FINTIM $=5.65$.DELT $=0.001$.DELS $=3.003$
PRINT $0.005, X M, Y M, X T, Y T, C R E, C R E D, D I S T, K I L I$
END
PARAM $M=5$.
END
PARAM $M=1$.
END
STOP

APPENDIX J
 PROGRAB OF THE MANEOVERING TARGET $\not \subset I T H$ SATURATIOA CONTROL

TTTLE
TITIE
TITLE
INTEG
INTGER
CONST
CONST
PARAM
INITIAL
BASIC COMMAND TO LOS
WITH SATURATION CONTROL
RKSFX
NPLOP, KILL, CUR
$N P L O T=1$, TCO $N=1.0, C U R=1$
$V M=500 ., V T=250, P I=3.141593$, KIL $L=0$
$M=10$.
$X T O=4000$.
$Y T O=1000$.
$\mathrm{GAMT}=\mathrm{F}=\mathrm{PI}$
*
 DERIVATIVE

*** TARGET PARAMETERS * $* *$

$S I G M=S I G T+0.1$

VXM $=$	VM * COS (SIGM)
VYM $=$	VM* SIN (SIGM)
$X M=$	INTGRI (0., VX M
YM	INTGRL (0.VYM)
RM =	SQRT (XM**2 + YM**2)
SIGMT	= SIGM - SIGT
CRE $=$	RM * SIN (SIGMT)
CRED	DERIV (0..CRE)
GO TO	200

* ON-OFP GUIDANCE (BANG-BANG CONTRJL) *
 *
50 CONTINUE
$G=150$.
ACRED = ABS (CRED)
$\begin{aligned} F & =\text { CRE } \\ \mathrm{U} & =-\mathrm{G} * \mathrm{SI} \text { (CRED*ACRED)/(2*G) }\end{aligned}$
$I F(A B S(F) \cdot I T \cdot M) U=-G * F / M$
CRED $=$ INTGRL $(0.0, \mathrm{U})$
CRE = INLGRI (CRE, CRED)
$A C R E=A B S$ (CRE)
$R M=\nabla M \neq T I B E$
$\mathrm{A} 3=\mathrm{CRE} / \mathrm{RM}$

$$
\begin{aligned}
& \text { SIGMT }=\text { ARSIN }(A 3) \\
& \text { SIGM }=\text { SIGT } 4 \text { SIGMT } \\
& X M=R M * \operatorname{COS}(S I G M \\
& Y M=R M * S I N(S I G M)
\end{aligned}
$$

 200 CONTINUE

*

 *** MISSION RESULI $* * *$ KIII $=0$; TGI MISSED


```
XDIST = XT-XM
YDIST = YT-YM
DIST = SQRT(XDIST**2 + YDIST**2)
IF (DIST.EE.5) KILL = KIN = (DIST:GT.5) KILL = 0
```

\#
SORT

 SAMPLE

TERMINAL
CALI DRWG (1, CUR, XM,YM)

IF (CUR •EQ•3) CALL ENDRW (NPLOT)
CONTRL FINTIM=5.65 DELT=0.001. DELS $=0.003$
PRINT O.OO5,XM,YM,XT,YT,CRE, CRED,DIST,KILL
END
PARAM $M=5$.
END
PARAM $M=1$.
END
STOP

APPENDIX K

PROGRAM OF THE COMMAND TO PSRODO-LOS WITH SATURATION CONTROL
TITLE
TITLE
TITLE
INTEG
INTGER
CONST
CONST
PARAM

```
PSEUDO LOS COMMAND
WTTH SATURATIONCONTROL
**** YEUN: J.Y. \(\$ * * * *\)
RKSFX
NPLOT, KILL, CUR
NPIOT=1, TCO \(N=1.0, C U R=1\)
\(V M=500 ., V T=250 . \mathrm{PI}=3.141593 . \mathrm{KILI}=0\)
\(M=10\).
```

$X T O=4000$.
$Y T O=1000$.
$T G M=0$.
$G A M=1$
$=1$.
*

DERIVATIVE

 NOSORT

*** TARGET PARAMETERS ***

* PROGRAMMED GUIDANCE ***** ********************************* *

* ON-OFF GOIDANCE (BANG-BANG CONTROL) ***************************) *****************************

50 CONTINUE
$G=150$.
ACRED $=A B S$ (CRED)
$F=C R E+(C R E D * A C R E D) /(2 * G)$

$\mathrm{CRED}=\mathrm{INTGRL}(0.0 . \mathrm{J})$
CRE = INTGRL (CRE, CRED)

 200 CONTINUE
*
 *米 MISSION RESULT * $* *$ KILI $=0$; TGT MISSED

$$
\begin{aligned}
& X D I S T=X T-X M \\
& \text { YDIST = YT-YM } \\
& \text { DIST = SQRT (XDIST**2 + YDIST**2) } \\
& V C=S Q R T(S T X-V M X) * * 2+(V T Y-V M Y) * * 2) \\
& T G=D I S I\rangle V C
\end{aligned}
$$

*

SORT

 SAMPLE

TERMINAL

CONTRL FINTIM=5.65 DELT=0.001 .DELS $=0.003$
PRINT 0.005,TG,XM,YM,XT, IT,CRE, CRED, DIST,KILL
END
PARAM $M=5$.
END
PARAM $\quad M=1$.
END
STOP

1. Garnell, P. 134 and East, D.J. 153 Guided Heapon control Systems. p. 134-153. Pergamon press. 1977.
2.

3. Hewitt, Frank F., LCDR, Compute= Simulated Development

4. U.S. Army Foreign Science and Technologycenter Report FSTC-1202-75, The Roland-1 ArmiIed Self-proceliod AA
Missile System, DY Johannes andweyand. pe
June 1976 .
5. Thaler, George J. and Pastel Marvin p. Analysis and
Designof Noninear Feedback 28 intol systems, p. 253 Design of Nonlinear pee

No. Copies

1. Defense rechnical Information center

Cameron Station
Alexandria, Virginia 22314
2. Library, Code 0142

Naval Eóstgraduate school
Monterey. Califcrnia 93943
3. Department Chairman. Code 62

Depariment of Electicical Engineering Naval postgraduate School
Monterey. Califirnia 93943
4. Division of Foreign Education

3
Department of Personnal Adminstration
Headquaters of Korean Air Force
Daebang-dong. Y cungdungpo-gu
Seoul. Kว工ea
5. Professor H.A. Titus, Code 62rs

5
Departmont of Electrical Engin三ering Naval postgraduate. School
Monterey, California 93943
6. Professor alex Gerba. Jr. Code 62Gs Department of Elecrincal Engineering Naval Postgraduate Schooi
7. Academic Dean

Ai= Force A cademy
Daebang-dong. Youngdungpo-gu Seoul. Korea
8. ITC. JE Young Yeun Jamsil 221-4, Gangdong-gu

[^0]: The Basic LoS Command (Saturation)

